Enhancing MicroRNA Activity through Increased Endosomal Release Mediated by Nigericin

通过增加尼日利亚菌素介导的内体释放来增强 microRNA 活性

阅读:8
作者:Esteban A Orellana, Ahmed M Abdelaal, Loganathan Rangasamy, Srinivasarao Tenneti, Sunghyun Myoung, Philip S Low, Andrea L Kasinski

Abstract

The therapeutic promise of small-RNA therapeutics is limited, not only by the lack of delivery vehicles, but also by the inability of the small RNAs to reach intracellular compartments where they can be biologically active. We previously reported successful delivery of functionally active miRNAs via receptor-mediated endocytosis. This type of targeted therapy still faces a major challenge in the delivery field: endosomal sequestration. Here, a new method has been developed to promote endosomal escape of delivered miRNA. The strategy relies on the difference in solute contents between nascent endosomes and the cytoplasm; early endosomes are rich in sodium ions, whereas the intracellular fluid is rich is potassium ions. Exploiting this difference through favoring the influx of potassium into the endosomes without the exchange of osmotically active sodium, results in an osmotic differential leading to the endosomes swelling and bursting. One molecule that is able to exchange potassium for an osmotically inactive hydrogen ion is the ionophore nigericin. Through generating an intramolecular miRNA delivery vehicle, containing a ligand, in this case folate and nigericin, we enabled the escape of folate-RNA conjugates from their entrapping endosomes into the cytoplasm where they bound the RNA-induced silencing complex and activated the RNAi response.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。