Genistein contributes to cell cycle progression and regulates oxidative stress in primary culture of osteoblasts along with osteoclasts attenuation

染料木黄酮促进细胞周期进程,调节成骨细胞原代培养中的氧化应激以及破骨细胞的衰减

阅读:5
作者:Sahabjada Siddiqui, Abbas Ali Mahdi, Md Arshad

Background

The present study was designed to examine the role of isoflavone genistein (GS) on bone formation, regulating oxidative stress and cell cycle in primary osteoblasts, as well as attenuation of osteoclast formation.

Conclusions

In conclusion, GS isoflavone might impart protective effects against oxidative stress-induced bone loss and thus, could maintain skeletal growth.

Methods

Primary calvaria osteoblasts were isolated from 2 to 3 days old neonatal rat pups (n = 6-8) of Sprague Dawley rats. Osteoblasts were incubated with varying concentrations of GS and different assays viz. cell proliferation, differentiation, calcium deposition, cell cycle progression, antioxidant ability, and osteogenic gene expression were performed. Tartrate-resistant acid phosphatase (TRAP) staining and immunolocalization of cathepsin K protein were assessed in bone marrow-derived osteoclasts.

Results

Results revealed that GS markedly induced cell growth and osteoblast differentiation depending upon dose. The fluorescent dye DCFH-DA staining data proved the antioxidant ability of GS, which reduced the H2O2- induced intracellular oxidative stress in osteoblasts. Quantitative real-time PCR analysis revealed that GS treatment upregulated the expression of osteoblastic genes of Runt-related transcription factor 2 (Runx2), bone morphogenetic proteins 2 (BMP2), and osteocalcin. Immunolocalization of BMP2 also indicated the osteogenic efficacy of GS. Furthermore, TRAP staining and cathepsin K expression depicted that GS inhibited multinucleated osteoclasts formation. Conclusions: In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。