Low Dose Berberine Suppresses Cholangiocarcinoma Cell Progression as a Multi-Kinase Inhibitor

低剂量小檗碱作为多激酶抑制剂抑制胆管癌细胞进展

阅读:6
作者:Sumalee Obchoei, Marutpong Detarya, Piyanard Boonnate, Paksiree Saranaruk, Kulthida Vaeteewoottacharn, Panupong Mahalapbutr, Seiji Okada, Sopit Wongkham

Background

Berberine (BBR), a natural isoquinoline alkaloid, possesses diverse pharmacological properties and anti-cancer effects that have been demonstrated in many in vitro and in vivo studies. In this study, the inhibitory effects and molecular mechanism of low dose BBR on EMT-induced cell migration, and invasion capability of cholangiocarcinoma (CCA) cell lines were demonstrated.

Conclusion

Low dose of BBR suppresses EMT and thus aggressiveness of CCA cells, in part by its multi-kinase inhibitor property on EGFR and its downstream pathways. BBR might be beneficial for therapy of human CCA.

Methods

The commercially available BBR chloride powder with purity ≥ 95% was used in this study. Effects of BBR on cell growth of two human CCA cell lines, KKU-213A and KKU-213B were measured using MTT assay. The progressive phenotypes-cell adhesion, migration, and invasion were evaluated using cell adhesion, wound healing, and Boyden chamber assays. Molecular docking analysis was performed to assess the possible binding mode of BBR against EGFR, Erk, STAT3 and Akt. The effects of BBR on the activations of EGF/EGFR and its downstream effectors were demonstrated using Western blotting.

Results

BBR inhibited growth of CCA cells in a dose dependent manner. At sub-cytotoxic dose, BBR significantly inhibited cell adhesion, migration, invasion and decreased expression of vimentin, slug, and VEGFA of both CCA cell lines. Molecular docking suggested the simultaneous inhibitory activity of BBR on EGFR, Erk, STAT3 and Akt. The Western blot analyses revealed that upon the EGF/EGFR activation, BBR considerably attenuated the activations of EGFR, Erk, STAT3 and Akt.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。