Significance
Scaffolds and cells play a key role in cartilage tissue engineering. The combined effects of physicochemical properties of collagen hydrogels and co-culture system (MSCs and chondrocytes) on chondrogenesis is unknown. In contrast to the studies that investigated the effect of single factor (scaffolds or cells) on cartilage formation, this manuscript explored the synergistic regulation of both scaffold properties and biological factors on chondrogenesis, and provided a promising strategy for cartilage tissue engineering.
Statement of significance
Scaffolds and cells play a key role in cartilage tissue engineering. The combined effects of physicochemical properties of collagen hydrogels and co-culture system (MSCs and chondrocytes) on chondrogenesis is unknown. In contrast to the studies that investigated the effect of single factor (scaffolds or cells) on cartilage formation, this manuscript explored the synergistic regulation of both scaffold properties and biological factors on chondrogenesis, and provided a promising strategy for cartilage tissue engineering.
