C1q/tumor necrosis factor-related protein-3 improves renal fibrosis via inhibiting notch signaling pathways

C1q/肿瘤坏死因子相关蛋白-3通过抑制Notch信号通路改善肾脏纤维化

阅读:4
作者:Xinpan Chen, Yiru Wu, Zongli Diao, Xue Han, Dishan Li, Xiongzhong Ruan, Wenhu Liu

Abstract

C1q/tumor necrosis factor-related protein-3 (CTRP3) has been extensively reported as an important role involved in antifibrosis, antiapoptosis, and anti-inflammation. However, the role of CTRP3 involved in renal fibrosis remains unclear. Our current study explored the role of CTRP3 in renal fibrosis and its underlying mechanisms by using serums and renal biopsy specimens from renal fibrosis patients and control subjects, rats models with the surgery of unilateral ureteral obstruction (UUO) and human renal proximal tubular epithelial cells (HRPTEpiCs). We found that circulating levels of CTRP3 had no significant difference between renal fibrosis patients and healthy subjects; however, renal CTRP3 expression was markedly downregulated in the fibrotic region with an abundant expression of collagen-I. In UUO rat models, circulating levels of CTRP3 have not changed with the prolonged obstruction of the kidney; renal CTRP3 expression was decreased with the severity of renal fibrosis; adenovirus-mediated CTRP3 treatment inhibited renal interstitial fibrosis. In vitro experiments revealed that CTRP3 attenuates TGF-β1 induced tubular epithelial cells fibrotic changes; CTRP3 knockdown facilitates the expression of fibrotic markers in TGF-β1-induced HRPTEpiCs; recombinant CTRP3 or adenovirus-mediated CTRP3 overexpression significantly inhibited the Notch signaling pathway-associated factors, and knockdown of CTRP3 increased TGF-β1-mediated activation of the Notch signaling pathways. Collectively, our current study found that CTRP3 could improve renal fibrosis, to some extent, through inhibiting the Notch pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。