Circular RNA hsa_circ_105039 promotes cardiomyocyte differentiation by sponging miR‑17 to regulate cyclinD2 expression

环状 RNA hsa_circ_105039 通过吸附 miR-17 来调节 cyclinD2 表达,从而促进心肌细胞分化

阅读:5
作者:Boshi Yu, Mengmeng Li, Shu Ping Han, Zhangbin Yu, Jingai Zhu

Abstract

Previously it was found that hsa_circ_105039 was underexpressed in the heart tissue of patients with congenital heart disease (CHD). However, the function and mechanism of hsa_circ_105039 in CHD are unclear. In the present study, induced pluripotent stem (iPS) cells were differentiated into cardiomyocytes using 1% dimethyl sulfoxide (DMSO). Cell differentiation, viability, migration and apoptosis were measured before and following hsa_circ_105039 knockdown or overexpression. The results indicated that hsa_circ_105039 overexpression promoted cell differentiation, viability and migration; whereas apoptosis was simultaneously repressed. A luciferase reporter assay verified that hsa_circ_105039 acted as a sponge for microRNA (miR)‑17 and that cyclinD2 was a direct target of miR‑17. Furthermore, differentiation‑related genes and proteins were analyzed by reverse transcription‑quantitative PCR and western blotting, respectively. The results showed that hsa_circ_105039 could also upregulate the expression of differentiation‑related genes and proteins, including natriuretic peptide A, cardiac troponin I, GATA‑binding protein 4 and homobox transcription factor, in iPS cells. The results suggested that hsa_circ_105039 exerted a protective effect by promoting miR‑17/cyclinD2 in DMSO‑induced iPS cardiomyocytes, which indicated that hsa_circ_105039 is a potential key molecule for the diagnosis of CHD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。