Palladium-anchored donor-flexible pyridylidene amide (PYA) electrocatalysts for CO2 reduction

用于 CO2 还原的钯锚定供体柔性吡啶亚酰胺 (PYA) 电催化剂

阅读:5
作者:Afshan Khurshid, Tania Tanveer, Komal Hafeez, Maqsood Ahmed, Zareen Akhtar, M Naveed Zafar

Abstract

The conversion of CO2 into CO as a substitute for processing fossil fuels to produce hydrocarbons is a sustainable, carbon neutral energy technology. However, the electrochemical reduction of CO2 into a synthesis gas (CO and H2) at a commercial scale requires an efficient electrocatalyst. In this perspective, a series of six new palladium complexes with the general formula [Pd(L)(Y)]Y, where L is a donor-flexible PYA, N2,N6-bis(1-ethylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, N2,N6-bis(1-butylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, or N2,N6-bis(1-benzylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide, and Y = OAc or Cl-, were utilized as active electrocatalysts for the conversion of CO2 into a synthesis gas. These palladium(ii) pincer complexes were synthesized from their respective H-PYA proligands using 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) or sodium acetate as a base. All the compounds were successfully characterized by various physical methods of analysis, such as proton and carbon NMR, FTIR, CHN, and single-crystal XRD. The redox chemistry of palladium complexes toward carbon dioxide activation suggested an evident CO2 interaction with each Pd(ii) catalyst. [Pd(N2,N6-bis(1-ethylpyridin-4(1H)-ylidene)pyridine-2,6-dicarboxamide)(Cl)]Cl showed the best electrocatalytic activity for CO2 reduction into a synthesis gas under the acidic condition of trifluoracetic acid (TFA) with a minimum overpotential of 0.40 V, a maximum turnover frequency (TOF) of 101 s-1, and 58% FE of CO. This pincer scaffold could be stereochemically tuned with the exploration of earth abundant first row transition metals for further improvements in the CO2 reduction chemistry.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。