Role of mammalian target of rapamycin signaling in autophagy and the neurodegenerative process using a senescence accelerated mouse-prone 8 model

使用衰老加速小鼠易感 8 模型研究哺乳动物雷帕霉素靶标信号在自噬和神经退行性过程中的作用

阅读:5
作者:Yanyong Wang, Qinying Ma, Xiaowei Ma, Zhongxia Zhang, Na Liu, Mingwei Wang

Abstract

The mammalian target of rapamycin (mTOR) kinase is an inhibitor of autophagy, which is an intracellular system involved in the degradation of long-lived proteins and organelles in lysosomes. Recent evidence suggests that the steady incline in mTOR function during aging may be associated with the cognitive decline related to aging and may also promote development of Tau pathology. At present, the senescence accelerated mouse prone 8 (SAMP8) is an experimental model that has been proposed for the study of age-related neurodegenerative changes associated with aging. In the present study, mTOR signaling in the hippocampus of SAMP8 newborn mice and in the control-strain SAMR1 mice was investigated. Consequently, hyper phosphorylated Tau (pS199 or pS396) and upregulated mTOR activity were observed in SAMP8 when compared with SAMR1; however, 0.5 µM rapamycin administration significantly reduced the levels of phosphorylated Tau and p70S6K (pT389) in SAMP8 mice. Related to these findings, SAMP8 exhibited an increase in the neuronal loss of hippocampus that was associated with lower levels of anti-apoptotic proteins. These results indicate that mTOR signaling participates in the neurodegenerative process and rapamycin administration may protect neurons of SAMP8 mice and may have a potential role in curing cognitive decline.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。