The brominated flame retardant BDE-47 causes oxidative stress and apoptotic cell death in vitro and in vivo in mice

溴化阻燃剂 BDE-47 在小鼠体内和体外引起氧化应激和细胞凋亡

阅读:8
作者:Lucio G Costa, Claudia Pellacani, Khoi Dao, Terrance J Kavanagh, Pamela J Roque

Abstract

Polybrominated diphenyl ethers (PBDEs), used for decades as flame retardants, have become widespread environmental contaminants. Exposure is believed to occur primarily through diet and dust, and infants and toddlers have the highest body burden, raising concern for potential developmental neurotoxicity. The exact mechanisms of PBDE neurotoxicity have not been elucidated, but two relevant modes of action relate to impairment of thyroid hormone homeostasis and to direct effects on brain cells causing alterations in signal transduction, oxidative stress and apoptotic cell death. The present study shows that BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) induces oxidative stress and ensuing apoptotic cell death in mouse cerebellar granule neurons in vitro. Similarly, in vivo administration of BDE-47, according to an exposure protocol shown to induce behavioral and biochemical alterations (10mg/kg, per os on post-natal day 10), induces oxidative stress and apoptosis, without altering serum levels of thyroid hormones. The effects of BDE-47 both in vitro and in vivo were more pronounced in a mouse model lacking the modifier subunit of glutamate cysteine ligase (GCLM) which results in reduced anti-oxidant capability due to low levels of GSH. Concentrations of BDE-47 in brain were in the mid-nanomolar range. These findings indicate that effects observed with BDE-47 in vitro are also present after in vivo administration, suggesting that in addition to potential endocrine effects, which were not seen here, direct interactions with brain cells should be considered as a potential mechanism of BDE-47 neurotoxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。