Serum untargeted metabolomics reveal metabolic alteration of non-small cell lung cancer and refine disease detection

血清非靶向代谢组学揭示非小细胞肺癌的代谢改变并细化疾病检测

阅读:6
作者:Jiaoyuan Li, Ke Liu, Zhi Ji, Yi Wang, Tongxin Yin, Tingting Long, Ying Shen, Liming Cheng

Abstract

This study was performed to characterize the metabolic alteration of non-small-cell lung cancer (NSCLC) and discover blood-based metabolic biomarkers relevant to lung cancer detection. An untargeted metabolomics-based approach was applied in a case-control study with 193 NSCLC patients and 243 healthy controls. Serum metabolomics were determined by using an ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. We screened differential metabolites based on univariate and multivariate analysis, followed by identification of the metabolites and related pathways. For NSCLC detection, machine learning was employed to develop and validate the model based on the altered serum metabolite features. The serum metabolic pattern of NSCLC was definitely different from the healthy condition. In total, 278 altered features were found in the serum of NSCLC patients comparing with healthy people. About one-fifth of the abundant differential features were identified successfully. The altered metabolites were enriched in metabolic pathways such as phenylalanine metabolism, linoleic acid metabolism, and biosynthesis of bile acids. We demonstrated a panel of 10 metabolic biomarkers which representing excellent discriminating capability for NSCLC discrimination, with a combined area under the curve (AUC) in the validation set of 0.95 (95% CI: 0.91-0.98). Moreover, this model showed a desirable performance for the detection of NSCLC at an early stage (AUC = 0.95, 95% CI: 0.92-0.97). Our study offers a perspective on NSCLC metabolic alteration. The finding of the biomarkers might shed light on the clinical detection of lung cancer, especially for those cancers in an early stage in Chinese population.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。