Everolimus reduces postoperative arthrofibrosis in rabbits by inducing autophagy-mediated fibroblast apoptosis by PI3K/Akt/mTOR signaling pathway

依维莫司通过 PI3K/Akt/mTOR 信号通路诱导自噬介导的成纤维细胞凋亡减轻兔术后关节纤维化

阅读:8
作者:Yun Liu, Zhen Zhang, Lianqi Yan, Xiaolei Li, Jie Zhang, Xiaobo Zhang, Dongming Zhu, Yu Sun, Qing Jiang

Conclusion

Everolimus can reduce surgery-induced knee fibrosis by inducing autophagy-mediated fibroblast apoptosis, which may be involved with the regulation of the PI3K/Akt/mTOR signaling pathway.

Methods

CCK-8 and flow cytometry assays were used to detect the effect of EVE on human fibroblast viability and apoptosis induction. IF and TEM were used to assess fibroblast autophagy. 3-methyladenine (3-MA) was applied to inhibit autophagy to clarify the relationship between autophagy and apoptosis. WB was used to measure the expression of proteins related to apoptosis, autophagy and the mTOR signaling pathway. A rabbit model of knee joint fibrosis was established and topically treated with various concentrations of EVE. IF-P was applied to identify that the main components cells of the fibrotic tissue and histomorphological staining was used to detect the degree of fibrosis and the content of collagen.

Objective

To investigate the effects of everolimus (EVE) on postoperative fibrosis in the knee joint and the potentially relevant signaling pathways.

Results

Histomorphological staining demonstrated that EVE could reduce the degree of postoperative fibrosis and collagen deposition in the knee joint. The results of IF, TEM, flow cytometry assays and WB detection showed that EVE could activate autophagy and induce fibroblasts apoptosis. Meanwhile, the expression levels of p-PI3K, p-Akt, p-mTOR were downregulated with EVE treatment. After the inhibition of autophagy by 3-MA treatment, the increased fibroblasts apoptosis by EVE treatment was partially decreased.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。