Cheongsangbangpung-tang ameliorated the acute inflammatory response via the inhibition of NF-κB activation and MAPK phosphorylation

青桑防风汤通过抑制 NF-κB 活化和 MAPK 磷酸化改善急性炎症反应

阅读:5
作者:Seon Young Kim, Sang Mi Park, Min Hwangbo, Jong Rok Lee, Sung Hui Byun, Sae Kwang Ku, Il Je Cho, Sang Chan Kim, Seon Young Jee, Sook Jahr Park

Background

Cheongsangbangpung-tang (CBT) is a traditional herbal formula used in Eastern Asia to treat heat-related diseases and swellings in the skin. The present study was conducted to evaluate the anti-inflammatory effects of cheongsangbangpung-tang extract (CBTE) both in vitro and in vivo.

Conclusions

Based on these results, CBTE should favourably inhibit the acute inflammatory response through modulation of NF-κB activation and MAPK phosphorylation. Furthermore, the inhibition of CBTE in rat paw oedema induced by CA is considered to be clear evidence that CBTE may be a useful source to treat inflammation.

Methods

The in vitro effects of CBTE on the lipopolysaccharide (LPS)-induced production of inflammation-related proteins were examined in RAW 264.7 cells. The levels of nitric oxide (NO) were measured with the Griess reagent. Inflammatory cytokines and prostaglandin E2 (PGE2) were detected using the enzyme-linked immunosorbent assay (ELISA) method. Inflammation-related proteins were detected by Western blot. The effect of CBTE on acute inflammation in vivo was evaluated using carrageenan (CA)-induced paw oedema. To evaluate the anti-inflammatory effect, paw oedema volume, thickness of the dorsum and ventrum pedis skin, number of infiltrated inflammatory cells, and number of COX-2-, iNOS-immunoreactive cells were measured.

Results

In an in vitro study, CBTE inhibited the production of NO and PGE2 and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) activity, interleukin (IL)-1β, IL-6 and tumuor necrosis factor-α. In LPS-activated macrophages, nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signalling is a pivotal pathway in the inflammatory process. These plausible molecular mechanisms increased the phosphorylation of I-κBα, while the activation of NF-κB and the phosphorylation of MAPK by LPS were blocked by CBTE treatment. In our in vivo study, a CA-induced acute oedematous paw inflammation rat model was used to evaluate the anti-inflammatory effect of CBTE. CBTE significantly reduced the increases in paw swelling, skin thicknesses, infiltrated inflammatory cells and iNOS-, COX-2 positive cells induced by CA injection. Conclusions: Based on these results, CBTE should favourably inhibit the acute inflammatory response through modulation of NF-κB activation and MAPK phosphorylation. Furthermore, the inhibition of CBTE in rat paw oedema induced by CA is considered to be clear evidence that CBTE may be a useful source to treat inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。