Cystathionine γ-lyase mediates cell proliferation, migration, and invasion of nasopharyngeal carcinoma

胱硫醚γ-裂解酶介导鼻咽癌细胞增殖、迁移和侵袭

阅读:4
作者:Qianqian Zhang #, Yingran Gao #, Yanxia Zhang, Mirong Jing, Di Wang, Yizhen Wang, Saadullah Khattak, Huiwen Qi, Chunbo Cai, Jing Zhang, Ebenezeri Erasto Ngowi, Nazeer Hussain Khan, Tao Li, Ailing Ji, Qiying Jiang, Xinying Ji, Yanzhang Li, Dongdong Wu

Abstract

Nasopharyngeal carcinoma (NPC) is an epithelia-derived malignancy with a distinctive geographic distribution. Cystathionine γ-lyase (CSE) is involved in cancer development and progression. Nevertheless, the role of CSE in the growth of NPC is unknown. In this study, we found that CSE levels in human NPC cells were higher than those in normal nasopharyngeal cells. CSE overexpression enhanced the proliferative, migrative, and invasive abilities of NPC cells and CSE downregulation exerted reverse effects. Overexpression of CSE decreased the expressions of cytochrome C, cleaved caspase (cas)-3, cleaved cas-9, and cleaved poly-ADP-ribose polymerase, whereas CSE knockdown exhibited reverse effects. CSE overexpression decreased reactive oxygen species (ROS) levels and the expressions of phospho (p)-extracellular signal-regulated protein kinase 1/2, p-c-Jun N-terminal kinase, and p-p38, but promoted the expressions of p-phosphatidylinositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR), whereas CSE knockdown showed oppose effects. In addition, CSE overexpression promoted NPC xenograft tumor growth and CSE knockdown decreased tumor growth by modulating proliferation, angiogenesis, cell cycle, and apoptosis. Furthermore, DL-propargylglycine (an inhibitor of CSE) dose-dependently inhibited NPC cell growth via ROS-mediated mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR pathways without significant toxicity. In conclusion, CSE could regulate the growth of NPC cells through ROS-mediated MAPK and PI3K/AKT/mTOR cascades. CSE might be a novel tumor marker for the diagnosis and prognosis of NPC. Novel donors/drugs that inhibit the expression/activity of CSE can be developed in the treatment of NPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。