Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway

异甘草酸镁通过 p38MAPK/Akt/Nox4 通路抑制成纤维细胞分化,改善放射性肺纤维化

阅读:6
作者:Qunfang Yang, Pan Zhang, Tao Liu, Xuan Zhang, Xichun Pan, Yanyan Cen, Ya Liu, Haigang Zhang, Xiaohong Chen

Abstract

Radiation-induced pulmonary fibrosis (RIPF) is a severe complication in patients treated with thoracic irradiation. Until now, there are no effective therapeutic drugs for RIPF. In the present study, we attempted to evaluate the effect of Magnesium isoglycyrrhizinate (MgIG) on RIPF, and to further explore the underlying mechanisms. We found that MgIG treatment markedly improved radiation-induced lung pathological changes, reduced collagen deposition, and decreased the transforming growth factor beta1 (TGF-β1) elevation induced by irradiation. In addition, MgIG treatment significantly relieved oxidative damage of pulmonary fibrosis in mice characterized by increased antioxidant factors expression and reduced oxidative factors expression. And, MgIG treatment also significantly reduced the production of intracellular reactive oxygen species (ROS) in vitro. Interestingly, administration of MgIG achieved lower expression levels of Nox4, and phosphorylation of p38MAPK and Akt in vivo and in vitro. Furthermore, treatment with MgIG notably reduced the expression levels of myofibroblast markers, Nox4, and phosphorylation of p38MAPK and Akt both in vivo and in vitro. More importantly, the inhibitory effects of MgIG on fibroblast differentiation were enhanced when the p38MAPK/Akt/Nox4 pathway was inhibited using their respective antagonists or Nox4 siRNA in vitro. Taken together, these findings suggested that MgIG could attenuate RIPF partly by inhibiting fibroblast differentiation, which was closely related to modulation of the p38MAPK/Akt/Nox4 pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。