Unravelling transcriptomic complexity in breast cancer through modulation of DARPP-32 expression and signalling pathways

通过调节 DARPP-32 表达和信号通路揭示乳腺癌转录组的复杂性

阅读:6
作者:Behnaz Saidy, Richa Vasan, Rosie Durant, Megan-Rose Greener, Adelynn Immanuel, Andrew R Green, Emad Rakha, Ian Ellis, Graham Ball, Stewart G Martin, Sarah J Storr

Abstract

DARPP-32 is a key regulator of protein-phosphatase-1 (PP-1) and protein kinase A (PKA), with its function dependent upon its phosphorylation state. We previously identified DKK1 and GRB7 as genes with linked expression using Artificial Neural Network (ANN) analysis; here, we determine protein expression in a large cohort of early-stage breast cancer patients. Low levels of DARPP-32 Threonine-34 phosphorylation and DKK1 expression were significantly associated with poor patient prognosis, while low levels of GRB7 expression were linked to better survival outcomes. To gain insight into mechanisms underlying these associations, we analysed the transcriptome of T47D breast cancer cells following DARPP-32 knockdown. We identified 202 differentially expressed transcripts and observed that some overlapped with genes implicated in the ANN analysis, including PTK7, TRAF5, and KLK6, amongst others. Furthermore, we found that treatment of DARPP-32 knockdown cells with 17β-estradiol or PKA inhibitor fragment (6-22) amide led to the differential expression of 193 and 181 transcripts respectively. These results underscore the importance of DARPP-32, a central molecular switch, and its downstream targets, DKK1 and GRB7 in breast cancer. The discovery of common genes identified by a combined patient/cell line transcriptomic approach provides insights into the molecular mechanisms underlying differential breast cancer prognosis and highlights potential targets for therapeutic intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。