Mg-Zn-Mn alloy extract induces the angiogenesis of human umbilical vein endothelial cells via FGF/FGFR signaling pathway

Mg-Zn-Mn合金提取物通过FGF/FGFR信号通路诱导人脐静脉内皮细胞血管生成

阅读:5
作者:Ding Li, Qi Yuan, Kun Yu, Tao Xiao, Lihong Liu, Yilong Dai, Liang Xiong, Boyu Zhang, Aoyu Li

Abstract

Magnesium (Mg) and its alloys as a type of different biodegradable materials have been used in the musculoskeletal field because of their excellent biocompatibility, biodegradability and mechanical properties similar to bone; besides, Mg could promote osteoblast differentiation in vitro and induce the formation of new bone in vivo. In the present study, we prepared the extracts of Mg-Zn-Mn alloy and examined their effects on the angiogenesis of human umbilical vein endothelial cells (HUVECs). In the present study, we prepared Mg-Zn-Mn alloy extracts of different concentrations and cultured HUVECs with these extracts. The DNA synthesis capacity, the cell viability, and the tube formation capacity of HUVECs could be significantly induced by 6.25% Mg alloy extract. In the meantime, the ratios of p-FGFR/FGFR, p-PI3K/PI3K, and p-AKT/AKT were significantly increased by 6.25% Mg alloy extract treatment, while decreased by FGFR/FGFR signaling pathway inhibitor BFJ398, indicating that 6.25% Mg alloy extract could promote the angiogenesis of HUVECs via activating FGF/FGFR signaling pathway. In conclusion, these data indicate that 6.25% Mg-Zn-Mn alloy extract induces the angiogenesis of HUVECs via FGF signaling pathway. Further in vivo experiments are needed to further confirm the present in vitro findings.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。