Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells

鉴定编码慢骨骼肌肌钙蛋白 T 的基因作为视网膜色素上皮细胞永生化的新标记

阅读:6
作者:Takuya Kuroda, Satoshi Yasuda, Hiroyuki Nakashima, Nozomi Takada, Satoko Matsuyama, Shinji Kusakawa, Akihiro Umezawa, Akifumi Matsuyama, Shin Kawamata, Yoji Sato

Abstract

Human pluripotent stem cells (hPSCs) are leading candidate raw materials for cell-based therapeutic products (CTPs). In the development of hPSC-derived CTPs, it is imperative to ensure that they do not form tumors after transplantation for safety reasons. Because cellular immortalization is a landmark of malignant transformation and a common feature of cancer cells, we aimed to develop an in vitro assay for detecting immortalized cells in CTPs. We employed retinal pigment epithelial (RPE) cells as a model of hPSC-derived products and identified a gene encoding slow skeletal muscle troponin T (TNNT1) as a novel marker of immortalized RPE cells by comprehensive microarray analysis. TNNT1 mRNA was commonly upregulated in immortalized RPE cells and human induced pluripotent stem cells (hiPSCs), which have self-renewal ability. Additionally, we demonstrated that TNNT1 mRNA expression is higher in several cancer tissues than in normal tissues. Furthermore, stable expression of TNNT1 in ARPE-19 cells affected actin filament organization and enhanced their migration ability. Finally, we established a simple and rapid qRT-PCR assay targeting TNNT1 transcripts that detected as low as 3% of ARPE-19 cells contained in normal primary RPE cells. Purified hiPSC-derived RPE cells showed TNNT1 expression levels below the detection limit determined with primary RPE cells. Our qRT-PCR method is expected to greatly contribute to process validation and quality control of CTPs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。