Generation of Distal Renal Segments Involves a Unique Population of Aqp2 + Progenitor Cells

远端肾节段的生成涉及一群独特的 Aqp2 + 祖细胞

阅读:7
作者:Chao Gao, Lihe Chen, Enuo Chen, Akaki Tsilosani, Yang Xia, Wenzheng Zhang

Background

Progenitor cells have clonogenicity, self-renewal, and multipotential capacity, and they can generate multiple types of cells during development. Evidence demonstrating the existence of such progenitor cells for renal distal segments is lacking.

Conclusion

Our study demonstrates that unique Aqp2 + B1B2 + cells are the potential APs to generate DCT2, CNT, CNT2, and CD segments.

Methods

To identify Aqp2 + progenitor (AP) cells, we performed in vivo lineage tracing using both constitutive ( Aqp2Cre RFP/+ ) and Tamoxifen-inducible ( Aqp2 ECE/+ RFP/+ , Aqp2 ECE/+ Brainbow/+ , and Aqp2 ECE/+ Brainbow/Brainbow ) mouse models. Aqp2Cre RFP/+ mice were analyzed from E14.5 to adult stage. The inducible models were induced at P1 and examined at P3 and P42, respectively. Multiple segment- or cell-specific markers were used for high-resolution immunofluorescence confocal microscopy analyses to identify the cell types derived from Aqp2 + cells.

Results

Both Aqp2Cre and Aqp2 ECE/+ faithfully indicate the activation of the endogenous Aqp2 promoter for lineage tracing. A subset of Aqp2 + cells behaves as potential AP. Aqp2Cre -based lineage tracing revealed that embryonic APs generate five types of cells, which form the late distal convoluted tubule (DCT2), connecting tubule segments 1 and 2 (CNT1 and CNT2, respectively), and collecting ducts (CDs). The α - and β -intercalated cells were apparently derived from embryonic AP in a stepwise manner. Aqp2 ECE/+ -based lineage tracing identified cells coexpressing Aqp2 and V-ATPase subunits B1 and B2 as the potential AP. Neonate APs generate daughter cells either inheriting their property (self-renewal) or evolving into various DCT2, CNT, or CD cells (multipotentiality), forming single cell-derived multiple-cell clones (clonogenicity) during development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。