Entorhinal cortex stimulation induces dentate gyrus neurogenesis through insulin receptor signaling

内嗅皮层刺激通过胰岛素受体信号诱导齿状回神经发生

阅读:4
作者:Abdolaziz Ronaghi, Mohammad Ismail Zibaii, Sareh Pandamooz, Nasrin Nourzei, Fereshteh Motamedi, Abolhassan Ahmadiani, Leila Dargahi

Abstract

Deep brain stimulation (DBS) has been established as a therapeutically effective method to treat pharmacological resistant neurological disorders. The molecular and cellular mechanisms underlying the beneficial effects of DBS on the brain are not yet fully understood. Beside numerous suggested mechanisms, regulation of neurogenesis is an attractive mechanism through which DBS can affect the cognitive functions. Considering the high expression of insulin receptors in hippocampus and also impaired neurogenesis in diabetic brain, the present study aimed to examine the role of insulin receptor signaling in DBS induced neurogenesis. High frequency stimulation was applied on the entorhinal cortex of rats and then neurogenesis markers in the dentate gyrus region of the hippocampus were examined using molecular and histological methods in the sham, DBS and insulin receptor antagonist-treated groups. In parallel, the changes in insulin receptor signaling in the hippocampus and spatial learning and memory performance were also assessed. DBS promoted adult hippocampal neurogenesis and facilitated the spatial memory concomitant with changes in insulin receptor signaling parameters including IR, IRS2 and GSK3β. Application of insulin receptor antagonist attenuated the DBS-induced neurogenesis. Our data emphasize that entorhinal cortex stimulation promotes adult hippocampal neurogenesis and facilitates spatial learning and memory at least partly through insulin receptors. Notably, GSK3β inhibition can play a major role in the downstream of insulin receptor signaling in DBS induced neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。