Modulation of Coenzyme Q10 content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging

使用浓度范围广泛的 HMG-CoA 还原酶抑制剂调节人类真皮成纤维细胞中的辅酶 Q10 含量和氧化状态。从线粒体兴奋效应到线粒体功能障碍和加速衰老

阅读:5
作者:Fabio Marcheggiani, Ilenia Cirilli, Patrick Orlando, Sonia Silvestri, Alexandra Vogelsang, Anja Knott, Thomas Blatt, Julia M Weise, Luca Tiano

Abstract

Coenzyme Q10 (CoQ10) is an endogenous lipophilic quinone, ubiquitous in biological membranes and endowed with antioxidant and bioenergetic properties, both crucial to the aging process. In fact, coenzyme Q10 synthesis is known to decrease with age in different tissues including skin. Moreover, synthesis can be inhibited by 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors such as statins, that are widely used hypocholesterolemic drugs. They target a key enzymatic step along the mevalonate pathway, involved in the synthesis of both cholesterol and isoprenylated compounds including CoQ10.In the present study, we show that pharmacological CoQ10 deprivation at concentrations of statins > 10000 nM triggers intracellular oxidative stress, mitochondrial dysfunction and generates cell death in human dermal fibroblasts (HDF). On the contrary, at lower statin concentrations, cells and mainly mitochondria, are able to partially adapt and prevent oxidative imbalance and overt mitochondrial toxicity. Importantly, our data demonstrate that CoQ10 decrease promotes mitochondrial permeability transition and bioenergetic dysfunction leading to premature aging of human dermal fibroblasts in vitro.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。