Radiologic-pathologic analysis of increased ethanol localization and ablative extent achieved by ethyl cellulose

乙基纤维素增加乙醇定位和消融范围的放射病理学分析

阅读:5
作者:Erika Chelales #, Robert Morhard #, Corrine Nief, Brian Crouch, Jeffrey I Everitt, Alan Alper Sag, Nirmala Ramanujam

Abstract

Ethanol provides a rapid, low-cost ablative solution for liver tumors with a small technological footprint but suffers from uncontrolled diffusion in target tissue, limiting treatment precision and accuracy. Incorporating the gel-forming polymer ethyl cellulose to ethanol localizes the distribution. The purpose of this study was to establish a non-invasive methodology based on CT imaging to quantitatively determine the relationship between the delivery parameters of the EC-ethanol formulation, its distribution, and the corresponding necrotic volume. The relationship of radiodensity to ethanol concentration was characterized with water-ethanol surrogates. Ex vivo EC-ethanol ablations were performed to optimize the formulation (n = 6). In vivo ablations were performed to compare the optimal EC-ethanol formulation to pure ethanol (n = 6). Ablations were monitored with CT and ethanol distribution volume was quantified. Livers were removed, sectioned and stained with NADH-diaphorase to determine the ablative extent, and a detailed time-course histological study was performed to assess the wound healing process. CT imaging of ethanol-water surrogates demonstrated the ethanol concentration-radiodensity relationship is approximately linear. A concentration of 12% EC in ethanol created the largest distribution volume, more than eight-fold that of pure ethanol, ex vivo. In vivo, 12% EC-ethanol was superior to pure ethanol, yielding a distribution volume three-fold greater and an ablation zone six-fold greater than pure ethanol. Finally, a time course histological evaluation of the liver post-ablation with 12% EC-ethanol and pure ethanol revealed that while both induce coagulative necrosis and similar tissue responses at 1-4 weeks post-ablation, 12% EC-ethanol yielded a larger ablation zone. The current study demonstrates the suitability of CT imaging to determine distribution volume and concentration of ethanol in tissue. The distribution volume of EC-ethanol is nearly equivalent to the resultant necrotic volume and increases distribution and necrosis compared to pure ethanol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。