Uncovering of intraspecies macular heterogeneity in cynomolgus monkeys using hybrid machine learning optical coherence tomography image segmentation

使用混合机器学习光学相干断层扫描图像分割揭示食蟹猴种内黄斑异质性

阅读:5
作者:Peter M Maloca, Christine Seeger, Helen Booler, Philippe Valmaggia, Ken Kawamoto, Qayim Kaba, Nadja Inglin, Konstantinos Balaskas, Catherine Egan, Adnan Tufail, Hendrik P N Scholl, Pascal W Hasler, Nora Denk

Abstract

The fovea is a depression in the center of the macula and is the site of the highest visual acuity. Optical coherence tomography (OCT) has contributed considerably in elucidating the pathologic changes in the fovea and is now being considered as an accompanying imaging method in drug development, such as antivascular endothelial growth factor and its safety profiling. Because animal numbers are limited in preclinical studies and automatized image evaluation tools have not yet been routinely employed, essential reference data describing the morphologic variations in macular thickness in laboratory cynomolgus monkeys are sparse to nonexistent. A hybrid machine learning algorithm was applied for automated OCT image processing and measurements of central retina thickness and surface area values. Morphological variations and the effects of sex and geographical origin were determined. Based on our findings, the fovea parameters are specific to the geographic origin. Despite morphological similarities among cynomolgus monkeys, considerable variations in the foveolar contour, even within the same species but from different geographic origins, were found. The results of the reference database show that not only the entire retinal thickness, but also the macular subfields, should be considered when designing preclinical studies and in the interpretation of foveal data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。