Adolescent administration of Δ9-THC decreases the expression and function of muscarinic-1 receptors in prelimbic prefrontal cortical neurons of adult male mice

青少年服用 Δ9-THC 会降低成年雄性小鼠前额叶皮质神经元中毒蕈碱-1 受体的表达和功能

阅读:5
作者:Miguel Garzón, Gang Wang, June Chan, Faye Bourie, Ken Mackie, Virginia M Pickel

Abstract

Long-term cannabis use during adolescence has deleterious effects in brain that are largely ascribed to the activation of cannabinoid-1 receptors (CB1Rs) by delta-9-tetrahydrocannabinol (∆9-THC), the primary psychoactive compound in marijuana. Systemic administration of ∆9-THC inhibits acetylcholine release in the prelimbic-prefrontal cortex (PL-PFC). In turn, PL-PFC acetylcholine plays a role in executive activities regulated by CB1R-targeting endocannabinoids, which are generated by cholinergic stimulation of muscarinic-1 receptors (M1Rs). However, the long-term effects of chronic administration of increasing doses of ∆9-THC in adolescent males on the distribution and function of M1 and/or CB1 receptors in the PL-PFC remains unresolved. We used C57BL\6J male mice pre-treated with vehicle or escalating daily doses of ∆9-THC to begin filling this gap. Electron microscopic immunolabeling showed M1R-immunogold particles on plasma membranes and in association with cytoplasmic membranes in varying sized dendrites and dendritic spines. These dendritic profiles received synaptic inputs from unlabeled, CB1R- and/or M1R-labeled axon terminals in the PL-PFC of both treatment groups. However, there was a size-dependent decrease in total (plasmalemmal and cytoplasmic) M1R gold particles in small dendrites within the PL-PFC of mice receiving ∆9-THC. Whole cell current-clamp recording in PL-PFC slice preparations further revealed that adolescent pretreatment with ∆9-THC attenuates the hyperpolarization and increases the firing rate produced by local muscarinic stimulation. Repeated administration of ∆9-THC during adolescence also reduced spontaneous alternations in a Y-maze paradigm designed for measures of PFC-dependent memory function in adult mice. Our results provide new information implicating M1Rs in cortical dysfunctions resulting from adolescent abuse of marijuana.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。