The Role of FGF9 in the Production of Neural Retina and RPE in a Pluripotent Stem Cell Model of Early Human Retinal Development

FGF9 在人类早期视网膜发育多能干细胞模型中对神经视网膜和 RPE 生成的作用

阅读:5
作者:David M Gamm, Eric Clark, Elizabeth E Capowski, Ruchira Singh

Conclusions

Our results show that FGF9 acts in concert with VSX2 to promote NR differentiation in hiPSC-OVs and has potential to be used to manipulate early retinogenesis and mitigate ocular defects caused by functional loss of VSX2 activity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.

Methods

Human induced pluripotent stem cell (hiPSC) lines from an individual with microphthalmia caused by a functional null mutation (R200Q) in visual system homeobox 2 (VSX2), a transcription factor involved in early NR progenitor cell (NRPC) production, and a normal sibling were differentiated along the retinal and forebrain lineages using an established protocol. Quantitative and global gene expression analyses (microarray and RNAseq) were used to investigate endogenous FGF expression profiles in these cultures over time. Based on these

Purpose

To investigate the role of fibroblast growth factors (FGFs) in the production of neural retina (NR) and retinal pigmented epithelium (RPE) in a human pluripotent stem cell model of early retinal development.

Results

We found that FGF9 and FGF19 were selectively increased in early hiPSC-derived optic vesicles (OVs) when compared to isogenic cultures of hiPSC-derived forebrain neurospheres. Furthermore, these same FGFs were downregulated over time in (R200Q)VSX2 hiPSC-OVs relative to sibling control hiPSC-OVs. Interestingly, long-term supplementation with FGF9, but not FGF19, partially rescued the mutant retinal phenotype of the (R200Q)VSX2 hiPSC-OV model. However, antagonizing FGF9 in wild-type control hiPSCs did not alter OV development. Conclusions: Our results show that FGF9 acts in concert with VSX2 to promote NR differentiation in hiPSC-OVs and has potential to be used to manipulate early retinogenesis and mitigate ocular defects caused by functional loss of VSX2 activity. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。