CSE triggers ferroptosis via SIRT4-mediated GNPAT deacetylation in the pathogenesis of COPD

CSE 通过 SIRT4 介导的 GNPAT 去乙酰化引发铁死亡,这是 COPD 发病机制中的重要环节

阅读:10
作者:Congping Li, Fei Chen, Liangfen Lin, Jiwei Li, Yamei Zheng, Qingyun Chen

Background

It is now understood that ferroptosis plays a significant role in the progression of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke extract (CSE). However, the mechanisms underlying this relationship remain largely unclear.

Conclusions

Our study revealed GNPAT could be deacetylated by SIRT4, providing novel insights into the mechanisms underlying the relationship between CSE-induced ferroptosis and COPD.

Methods

In this study, we established a COPD mouse model through exposure to cigarette smoke particulates, followed by H&E staining, analysis of bronchoalveolar lavage fluid, and immunohistochemistry assay. A549 cells were exposed to increasing concentrations of CSE, with the addition of the ferroptosis activator erastin or the inhibitor Fer-1. Cell viability, LDH (lactate dehydrogenase) release, inflammatory cytokines, total ROS (reactive oxygen species), and lipid ROS were measured using the corresponding assay kits. The acetylation level of GNPAT was determined through immunoprecipitation. We assessed the expression levels of molecules involved in plasmalogen biosynthesis (FAR1, AGPS, and GNPAT), GPX4, and SIRT4 using quantitative real-time PCR, western blot analysis, and immunofluorescence staining.

Results

CSE-induced lung tissue damage was initially observed, accompanied by oxidative stress, ferroptosis, and increased plasmalogen biosynthesis molecules (FAR1, AGPS, and GNPAT). CSE also induced ferroptosis in A549 cells, resulting in reduced cell viability, GSH, and GPX4 levels, along with increased LDH, ROS, MDA (malondialdehyde) levels, oxidized lipids, and elevated FAR1, AGPS, and GNPAT expression. Knockdown of GNPAT mitigated CSE-induced ferroptosis. Furthermore, we found that CSE regulated the acetylation and protein levels of GNPAT by modulating SIRT4 expression. Importantly, the overexpression of GNPAT countered the inhibitory effects of SIRT4 on ferroptosis. Conclusions: Our study revealed GNPAT could be deacetylated by SIRT4, providing novel insights into the mechanisms underlying the relationship between CSE-induced ferroptosis and COPD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。