Downregulation of FXYD2 Is Associated with Poor Prognosis and Increased Regulatory T Cell Infiltration in Clear Cell Renal Cell Carcinoma

FXYD2 下调与透明细胞肾细胞癌预后不良和调节性 T 细胞浸润增加相关

阅读:6
作者:Zedan Zhang, Yanlin Tang, Lei Li, Wuping Yang, Yawei Xu, Jingcheng Zhou, Kaifang Ma, Kenan Zhang, Hongkai Zhuang, Yanqing Gong, Kan Gong

Background

FXYD2, a gene coding for the γ subunit of Na+/K+-ATPase, was demonstrated to involve in carcinogenesis recently. However, the specific role of FXYD2 in clear cell renal cell carcinoma (ccRCC) remains unknown. The current study was conducted to investigate the expression, biological function, and potentially immune-related mechanisms of FXYD2 in ccRCC. Materials and

Conclusions

Downregulation of FXYD2 is associated with ccRCC tumorigenesis, poor prognosis, and increased Treg infiltration in ccRCC, which may be related to TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways. This will probably provide a novel prognostic marker and potential therapeutic target for ccRCC.

Results

FXYD2 was identified to be downregulated in ccRCC tissue compared to normal tissue, which was confirmed by our RT-PCR, WB, and IHC analyses. Kaplan-Meier survival analysis and Cox regression analysis suggested that downregulated FXYD2 could independently predict poor survival of ccRCC patients. Through the ESTIMATE algorithm, ssGSEA algorithm, CIBERSORT algorithm, TIMER database, and our laboratory experiment, FXYD2 was found to correlate with the immune landscape, especially regulatory T cells (Treg), in ccRCC. Gain-of-function experiment revealed that FXYD2 could restrain cell proliferation, migration, and invasion in vitro. Functional enrichment analysis illustrated that TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways may be potential signaling pathways of FXYD2 in ccRCC. Conclusions: Downregulation of FXYD2 is associated with ccRCC tumorigenesis, poor prognosis, and increased Treg infiltration in ccRCC, which may be related to TGF-β-SMAD2/3, Notch, and PI3K-Akt-mTOR signaling pathways. This will probably provide a novel prognostic marker and potential therapeutic target for ccRCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。