Different roles attributed to Cav1 channel subtypes in spontaneous action potential firing and fine tuning of exocytosis in mouse chromaffin cells

Cav1 通道亚型在小鼠嗜铬细胞自发动作电位激发和胞吐微调中发挥的不同作用

阅读:5
作者:Alberto Pérez-Alvarez, Alicia Hernández-Vivanco, Jose Carlos Caba-González, Almudena Albillos

Abstract

This study examines the Cav1 isoforms expressed in mouse chromaffin cells and compares their biophysical properties and roles played in cell excitability and exocytosis. Using immunocytochemical and electrophysiological techniques in mice lacking the Cav1.3α1 subunit (Cav1.3(-/-) ) or the high sensitivity of Cav1.2α1 subunits to dihydropyridines, Cav1.2 and Cav1.3 channels were identified as the only Cav1 channel subtypes expressed in mouse chromaffin cells. Cav1.3 channels were activated at more negative membrane potentials and inactivated more slowly than Cav1.2 channels. Cav1 channels, mainly Cav1.2, control cell excitability by functional coupling to BK channels, revealed by nifedipine blockade of BK channels in wild type (WT) and Cav1.3(-/-) cells (53% and 35%, respectively), and by the identical change in the shape of the spontaneous action potentials elicited by the dihydropyridine in both strains of mice. Cav1.2 channels also play a major role in spontaneous action potential firing, supported by the following evidence: (i) a similar percentage of WT and Cav1.3(-/-) cells fired spontaneous action potentials; (ii) firing frequency did not vary between WT and Cav1.3(-/-) cells; (iii) mostly Cav1.2 channels contributed to the inward current preceding the action potential threshold; and (iv) in the presence of tetrodotoxin, WT or Cav1.3(-/-) cells exhibited spontaneous oscillatory activity, which was fully abolished by nifedipine perfusion. Finally, Cav1.2 and Cav1.3 channels were essential for controlling the exocytotic process at potentials above and below -10 mV, respectively. Our data reveal the key yet differential roles of Cav1.2 and Cav1.3 channels in mediating action potential firing and exocytotic events in the neuroendocrine chromaffin cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。