CNS penetration of the CDK4/6 inhibitor ribociclib in non-tumor bearing mice and mice bearing pediatric brain tumors

CDK4/6 抑制剂 ribociclib 在非肿瘤小鼠和患有儿童脑肿瘤的小鼠中枢神经系统渗透情况

阅读:5
作者:Yogesh T Patel, Abigail Davis, Suzanne J Baker, Olivia Campagne, Clinton F Stewart

Conclusions

The CNS penetration observed was encouraging enough to move ribociclib forward with preclinical efficacy studies in models of pediatric brain tumors.

Methods

A plasma pharmacokinetic study of ribociclib (100 mg/kg, orally) was performed in CD1 nude mice bearing glioma cortical allografts to obtain initial plasma pharmacokinetic parameters and to derive D-optimal plasma sampling time-points for microdialysis studies. Using a cerebral microdialysis technique, the extracellular fluid (ECF) disposition of ribociclib was evaluated after a single oral ribociclib dose (100 mg/kg) in non-tumor bearing mice and in mice bearing glioma cortical allografts. A one-compartment plasma model with absorption and ECF compartments were fit to plasma and ECF concentration-time data using a nonlinear mixed effects modeling approach (NONMEM 7.2).

Purpose

Ribociclib, an orally bioavailable small-molecule CDK4/6 inhibitor is currently undergoing evaluation to treat pediatric central nervous system (CNS) tumors. However, it is crucial that it penetrates the brain and tumor. Thus, the objectives of the present study were to derive a clinically relevant mouse dosage for cerebral microdialysis studies, and to characterize ribociclib CNS penetration in non-tumor bearing mice and in mice bearing DIPGx7 (glioma) cortical allograft tumors.

Results

The mean unbound ribociclib plasma exposure (6812 ng/ml*h) was similar to that observed clinically at recommended dosages in adults. The median ribociclib ECF to plasma partition coefficient (Kp,uu) in non-tumor bearing and glioma mice was 0.10 and 0.07, respectively, and was not statistically different (t test, p = 0.19). Conclusions: The CNS penetration observed was encouraging enough to move ribociclib forward with preclinical efficacy studies in models of pediatric brain tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。