Proinflammatory cytokines driving cardiotoxicity in COVID-19

促炎细胞因子导致 COVID-19 的心脏毒性

阅读:5
作者:Maria Colzani, Johannes Bargehr, Federica Mescia, Eleanor C Williams, Vincent Knight-Schrijver, Jonathan Lee, Charlotte Summers, Irina Mohorianu, Kenneth G C Smith, Paul A Lyons, Sanjay Sinha

Aims

Cardiac involvement is common in patients hospitalized with COVID-19 and correlates with an adverse disease trajectory. While cardiac injury has been attributed to direct viral cytotoxicity, serum-induced cardiotoxicity secondary to serological hyperinflammation constitutes a potentially amenable mechanism that remains largely unexplored.

Conclusion

These results provide direct evidence that inflammatory cytokines are at least in part responsible for the cardiovascular damage seen in COVID-19 and characterise the downstream activated pathways in human cardiomyocytes. The serum signature of patients with severe disease indicates possible targets for therapeutic intervention.

Results

To investigate serological drivers of cardiotoxicity in COVID-19 we have established a robust bioassay that assessed the effects of serum from COVID-19 confirmed patients on human embryonic stem cell (hESC)-derived cardiomyocytes. We demonstrate that serum from COVID-19 positive patients significantly reduced cardiomyocyte viability independent of viral transduction, an effect that was also seen in non-COVID-19 acute respiratory distress syndrome (ARDS). Serum from patients with greater disease severity led to worse cardiomyocyte viability and this significantly correlated with levels of key inflammatory cytokines, including IL-6, TNF-α, IL1-β, IL-10, CRP, and neutrophil to lymphocyte ratio with a specific reduction of CD4+ and CD8+ cells. Combinatorial blockade of IL-6 and TNF-α partly rescued the phenotype and preserved cardiomyocyte viability and function. Bulk RNA sequencing of serum-treated cardiomyocytes elucidated specific pathways involved in the COVID-19 response impacting cardiomyocyte viability, structure, and function. The observed effects of serum-induced cytotoxicity were cell-type selective as serum exposure did not adversely affect microvascular endothelial cell viability but resulted in endothelial activation and a procoagulant state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。