SEC14L2, a lipid-binding protein, regulates HCV replication in culture with inter- and intra-genotype variations

SEC14L2 是一种脂质结合蛋白,可通过基因型间和基因型内变异来调节培养中的 HCV 复制

阅读:6
作者:Rui Costa, Daniel Todt, Francisco Zapatero-Belinchón, Christian Schenk, Olympia E Anastasiou, Andreas Walker, Barbara Hertel, Lejla Timmer, Denisa Bojkova, Maren Ruckert, Christoph Sarrazin, Jörg Timm, Volker Lohmann, Michael P Manns, Eike Steinmann, Thomas von Hahn, Sandra Ciesek

Aims

The lipid-binding protein, SEC14L2, is crucial for the efficient viral replication of clinical hepatitis C virus (HCV) isolates in cell culture. Given the role of SEC14L2 in HCV replication, we aimed to study a large number of HCV positive sera carrying genotypes 1-4, to identify viral factors associated with efficient replication in culture. Additionally, we investigated whether 13 single nucleotide polymorphisms (SNPs) of SEC14L2 have an impact on RNA replication of naturally occurring HCV isolates.

Background & aims

The lipid-binding protein, SEC14L2, is crucial for the efficient viral replication of clinical hepatitis C virus (HCV) isolates in cell culture. Given the role of SEC14L2 in HCV replication, we aimed to study a large number of HCV positive sera carrying genotypes 1-4, to identify viral factors associated with efficient replication in culture. Additionally, we investigated whether 13 single nucleotide polymorphisms (SNPs) of SEC14L2 have an impact on RNA replication of naturally occurring HCV isolates.

Conclusions

This large screen of natural HCV isolates of 4 genotypes underscores the relevance of SEC14L2 as an in vitro HCV host factor. Additionally, SEC14L2 variants appear to recapitulate the wild-type enhancement of HCV replication. Variant rs191341134 showed a decreased effect due to lowered stability, whereas variant rs757660, a high prevalence mutant, showed a similar phenotype to the wild-type. Lay summary: Until the year 2015, consistent replication of patient-derived isolates of hepatitis C virus (HCV) in an in vitro model remained a limitation in HCV research. In 2015 a group of authors identified a protein named SEC14L2 that enabled the replication of HCV isolates in cell culture. We performed a large screen encompassing 73 isolates of 4 different HCV genotypes. Additionally, we replaced the natural SEC14L2 with 13 different mutants to test if the protein variation significantly altered its HCV replication enhancing functions. We showed that different genotypes of HCV react differently to the presence of this protein and the variants of the protein mimic the behavior of the wild-type.

Methods

We generated Huh-7.5 cell lines overexpressing SEC14L2 or 13 coding SNPs and tested 73 different HCV positive sera for in vitro replication. Furthermore, we genotyped a cohort of 262 patients with chronic HCV for the common SNP (rs757660) and investigated its effect on the clinical phenotype.

Results

HCV isolates from genotype 1, 2, 3 and 4 replicate in Huh-7.5 cells overexpressing SEC14L2. Interestingly, only subgenomic replicons from genotypes 1 and 3 showed enhanced replication whereas genotypes 2 and 4 remained unaffected. Furthermore, replication was independent of viral load. Importantly, all tested SNPs supported HCV RNA replication in vitro, while 1 SNP was associated with decreased SEC1L2 expression and viral RNA. All SNPs exhibited comparable cellular cholesterol and vitamin E abundance in naïve Huh-7.5 cells. Conclusions: This large screen of natural HCV isolates of 4 genotypes underscores the relevance of SEC14L2 as an in vitro HCV host factor. Additionally, SEC14L2 variants appear to recapitulate the wild-type enhancement of HCV replication. Variant rs191341134 showed a decreased effect due to lowered stability, whereas variant rs757660, a high prevalence mutant, showed a similar phenotype to the wild-type. Lay summary: Until the year 2015, consistent replication of patient-derived isolates of hepatitis C virus (HCV) in an in vitro model remained a limitation in HCV research. In 2015 a group of authors identified a protein named SEC14L2 that enabled the replication of HCV isolates in cell culture. We performed a large screen encompassing 73 isolates of 4 different HCV genotypes. Additionally, we replaced the natural SEC14L2 with 13 different mutants to test if the protein variation significantly altered its HCV replication enhancing functions. We showed that different genotypes of HCV react differently to the presence of this protein and the variants of the protein mimic the behavior of the wild-type.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。