Engineering a far-red light-activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors

设计远红光激活的 split-Cas9 系统,用于远程控制内脏器官和肿瘤的基因组编辑

阅读:5
作者:Yuanhuan Yu, Xin Wu, Ningzi Guan, Jiawei Shao, Huiying Li, Yuxuan Chen, Yuan Ping, Dali Li, Haifeng Ye

Abstract

It is widely understood that CRISPR-Cas9 technology is revolutionary, with well-recognized issues including the potential for off-target edits and the attendant need for spatiotemporal control of editing. Here, we describe a far-red light (FRL)-activated split-Cas9 (FAST) system that can robustly induce gene editing in both mammalian cells and mice. Through light-emitting diode-based FRL illumination, the FAST system can efficiently edit genes, including nonhomologous end joining and homology-directed repair, for multiple loci in human cells. Further, we show that FAST readily achieves FRL-induced editing of internal organs in tdTomato reporter mice. Finally, FAST was demonstrated to achieve FRL-triggered editing of the PLK1 oncogene in a mouse xenograft tumor model. Beyond extending the spectrum of light energies in optogenetic toolbox for CRISPR-Cas9 technologies, this study demonstrates how FAST system can be deployed for programmable deep tissue gene editing in both biological and biomedical contexts toward high precision and spatial specificity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。