Placental Stem Villus Arterial Remodeling Associated with Reduced Hydrogen Sulfide Synthesis Contributes to Human Fetal Growth Restriction

胎盘干绒毛动脉重塑与硫化氢合成减少相关,导致人类胎儿生长受限

阅读:4
作者:Liangjian Lu, John Kingdom, Graham J Burton, Tereza Cindrova-Davies

Abstract

Intrauterine fetal growth restriction (IUGR) is often associated with compromised umbilical arterial flow, indicating increased placental vascular resistance. Oxidative stress is causatively implicated. Hydrogen sulfide maintains differentiated smooth muscle in vascular beds, and its synthetic enzyme cystathionine-γ-lyase (CSE) is down-regulated in growth-restricted placentas. We hypothesized that remodeling of resistance arteries in stem villi contributes to IUGR by compromising umbilical blood flow via oxidative stress, reducing hydrogen sulfide signaling. Stem villus arteries in human IUGR placentas displaying absent or reversed end-diastolic flow contained reduced myosin heavy chain, smooth muscle actin, and desmin, and increased markers of dedifferentiation, cellular retinol-binding protein 1, and matrix metalloproteinase 2, compared to term and preterm controls. Wall thickness/lumen ratio was increased, lumen diameter decreased, but wall thickness remained unchanged in IUGR placentas. CSE correlated positively with myosin heavy chain, smooth muscle actin, and desmin. Birth weight correlated positively with CSE, myosin heavy chain, smooth muscle actin, and desmin, and negatively with cellular retinol-binding protein 1 and matrix metalloproteinase 2. These findings could be recapitulated in vitro by subjecting stem villus artery explants to hypoxia-reoxygenation, or inhibiting CSE. Treatment with a hydrogen sulfide donor, diallyl trisulfide, prevented these changes. IUGR is associated with vascular remodeling of the stem villus arteries. Oxidative stress results in reduction of placental CSE activity, decreased hydrogen sulfide production, and smooth muscle cell dedifferentiation in vitro. This vascular remodeling is reversible, and hydrogen sulfide donors are likely to improve pregnancy outcomes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。