Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation

小分子激动剂 7,8-二羟基黄酮激活心脏 TrkB 受体,通过增强线粒体氧化磷酸化抑制阿霉素诱导的心脏毒性

阅读:5
作者:Jing Zhao, Jingjing Du, Yang Pan, Tingting Chen, Lihui Zhao, Yanmeng Zhu, Yingfu Chen, Yuyang Zheng, Yu Liu, Lihua Sun, Pengzhou Hang, Zhimin Du

Abstract

Brain-derived neurotrophic factor (BDNF)/tropomyosin-related receptor kinase B (TrkB) pathway has been revealed as a novel therapeutic target for several neurological diseases. Recently, small-molecule TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) has received considerable attention as a novel potential candidate for the treatment of various BDNF-implicated human disorders. However, its roles in cardiac diseases are not fully understood. Here, the present study aimed to clarify the effects and mechanisms of 7,8-DHF on doxorubicin (Dox)-induced cardiotoxicity. Kunming mice and H9c2 cells were employed to investigate the functional role of 7,8-DHF both in vivo and in vitro. 7,8-DHF markedly increased cell viability and reduced cell death of Dox-treated cells. Meanwhile, 7,8-DHF significantly increased mitochondrial respiration, membrane potential, and optic atrophy 1 (OPA1) protein expression. 7,8-DHF improved cardiac function and attenuated cardiac injury in Dox mice model. Expression of AMP-activated protein kinase (AMPK) and signal transducers and activators of transcription 3 (STAT3) was restored by 7,8-DHF. Furthermore, the protective role of 7,8-DHF was abolished by ANA-12 (a specific antagonist of TrkB). In elucidating the molecular mechanism, the phosphorylation of Akt was significantly increased while extracellular regulated protein kinase (ERK) was decreased after 7,8-DHF treatment. The regulatory effects of 7,8-DHF on STAT3 and AMPK was reversed by Akt inhibitor. In summary, 7,8-DHF attenuated Dox-induced cardiotoxicity by activating Akt and increasing mitochondrial oxidative phosphorylation and thereby regulating STAT3, AMPK, and ERK signals. The present study enhanced current understanding of TrkB receptor in the cardiovascular system and provided a novel target for prevention and treatment of heart diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。