Hydralazine modifies Aβ fibril formation and prevents modification by lipids in vitro

肼屈嗪可改变 Aβ 纤维的形成并防止体外脂质的修饰

阅读:6
作者:Mukesh Maheshwari, Jessica K Roberts, Brent Desutter, Karen T Duong, Joseph Tingling, Janelle N Fawver, Hayley E Schall, Michael Kahle, Ian V J Murray

Abstract

Lipid oxidative damage and amyloid β (Aβ) misfolding contribute to Alzheimer's disease (AD) pathology. Thus, the prevention of oxidative damage and Aβ misfolding are attractive targets for drug discovery. At present, no AD drugs approved by the Food and Drug Administration (FDA) prevent or halt disease progression. Hydralazine, a smooth muscle relaxant, is a potential drug candidate for AD drug therapy as it reduces Aβ production and prevents oxidative damage via its antioxidant hydrazide group. We evaluated the efficacy of hydralazine, and related hydrazides, in reducing (1) Aβ misfolding and (2) Aβ protein modification by the reactive lipid 4-hydroxy-2-nonenal (HNE) using transmission electron microscopy and Western blotting. While hydralazine did not prevent Aβ aggregation as measured using the protease protection assay, there were more oligomeric species observed by electron microscopy. Hydralazine prevented lipid modification of Aβ, and Aβ was used as a proxy for classes of proteins which either misfold or are modified by HNE. All of the other hydrazides prevented lipid modification of Aβ and also did not prevent Aβ aggregation. Surprisingly, a few of the compounds, carbazochrome and niclosamide, appeared to augment Aβ formation. Thus, hydrazides reduced lipid oxidative damage, and hydralazine additionally reduced Aβ misfolding. While hydralazine would require specific chemical modifications for use as an AD therapeutic itself (to improve blood brain barrier permeability, reduce vasoactive side effects, and optimization for amyloid inhibition), this study suggests its potential merit for further AD drug development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。