Protective Effects of Heat-Killed Ruminococcus albus against β-Amyloid-Induced Apoptosis on SH-SY5Y Cells

热灭活白色瘤胃球菌对β-淀粉样蛋白诱导的SH-SY5Y细胞凋亡的保护作用

阅读:6
作者:Seungmoon Choo, Mirae An, Young-Hee Lim

Abstract

A high level of β-amyloid (Aβ) in the brains of patients with Alzheimer's disease (AD) generates reactive oxygen species that induce neuronal death and DNA damage. The interaction between the gut microbiota and brain health has attracted attention in recent years. Heat-killed Ruminococcus albus (hkRA) reportedly protects neurons against damage induced by oxidative stress. However, whether hkRA can inhibit Aβ-induced apoptosis and thus alleviate AD remains unclear. Hence, we aimed to evaluate the protective effects of hkRA against Aβ-induced apoptosis on the human neuroblastoma SH-SY5Y cell. HkRA treatment (108 cells/ml) significantly decreased the Aβ-induced cytotoxicity and DNA damage in the SH-SY5Y cells. It also showed a significant increase of the bax/bcl-2 ratio in the Aβ-treated SH-SY5Y cells. Moreover, hkRA treatment stimulated the expression of antioxidation-related genes HO-1, Nrf2, and PKC-δ and increased the expression of brain-derived neurotrophic factor (BDNF). Meanwhile, it significantly decreased the activity of caspase-3 and protein expression of cleaved caspase-3 in the Aβ-treated SH-SY5Y cells. Additionally, the protein levels of mitochondrial and cytosolic cytochrome c increased and decreased, respectively, in the cells. These results suggest that hkRA protects human neuroblastoma cells from Aβ-induced apoptosis and oxidative stress. Thus, hkRA may be developed into a health-promoting paraprobiotic (the inactivated microbial cells of probiotics) for patients with AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。