Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system

染色质重塑剂 Ep400 可确保少突胶质细胞存活,并且是脊椎动物中枢神经系统髓鞘形成所必需的

阅读:9
作者:Olga Elsesser, Franziska Fröb, Melanie Küspert, Ernst R Tamm, Toshihiro Fujii, Rikiro Fukunaga, Michael Wegner

Abstract

Differentiating oligodendrocytes generate myelin to ensure rapid saltatory conduction in the vertebrate central nervous system. Although oligodendroglial differentiation and myelination are accompanied by dramatic chromatin reorganizations, previously studied chromatin remodelers had only limited direct effects on the process. To study the functional significance of chromatin changes for myelination and identify relevant remodelers, we deleted Ep400, the central ATP-hydrolyzing subunit of the TIP60/EP400 complex, at defined times of mouse oligodendrocyte development. Whereas Ep400-deficient oligodendrocyte precursors develop normally, terminal differentiation and myelination are dramatically impaired. Mechanistically, Ep400 interacts with transcription factor Sox10, binds to regulatory regions of the Myrf gene and is required to induce this central transcriptional regulator of the myelination program. In addition to reduced and aberrant myelin formation, oligodendrocytes exhibit increased DNA damage and apoptosis so that numbers never reach wildtype levels during the short lifespan of Ep400-deficient mice. Ep400 deletion in already mature oligodendrocytes remains phenotypically inapparent arguing that Ep400 is dispensable for myelin maintenance. Given its essential function in myelin formation, modulation of Ep400 activity may be beneficial in conditions such as multiple sclerosis where this process is compromised.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。