High Cholesterol Diet Exacerbates Blood-Brain Barrier Disruption in LDLr-/- Mice: Impact on Cognitive Function

高胆固醇饮食加剧 LDLr-/- 小鼠的血脑屏障破坏:对认知功能的影响

阅读:5
作者:Jade de Oliveira, Daiane F Engel, Gabriela C de Paula, Danúbia B Dos Santos, Jadna B Lopes, Marcelo Farina, Eduardo L G Moreira, Andreza F de Bem

Background

Evidence has revealed an association between familial hypercholesterolemia and cognitive impairment. In this regard, a connection between cognitive deficits and hippocampal blood-brain barrier (BBB) breakdown was found in low-density lipoprotein receptor knockout mice (LDLr-/-), a mouse model of familial hypercholesterolemia.

Conclusion

Therefore, LDLr-/-mice seem to be more susceptible to cognitive impairments and BBB damage induced by exposure to a high cholesterol diet. Finally, BBB disruption appears to be a relevant event in hypercholesterolemia-induced brain alterations.

Methods

Animals were fed with normal or high cholesterol diets for 30 days. Thus, wild-type and LDLr-/-mice were submitted to memory paradigms. Additionally, BBB integrity was evaluated in the mice's prefrontal cortices and hippocampi.

Objective

Herein we investigated the impact of a hypercholesterolemic diet on cognition and BBB function in C57BL/6 wild-type and LDLr-/-mice.

Results

A tenfold elevation in plasma cholesterol levels of LDLr-/-mice was observed after a hypercholesterolemic diet, while in wild-type mice, the hypercholesterolemic diet exposure increased plasma cholesterol levels only moderately and did not induce cognitive impairment. LDLr-/-mice presented memory impairment regardless of the diet. We observed BBB disruption as an increased permeability to sodium fluorescein in the prefrontal cortices and hippocampi and a decrease on hippocampal claudin-5 and occludin mRNA levels in both wild-type and LDLr-/-mice treated with a hypercholesterolemic diet. The LDLr-/-mice fed with a regular diet already presented BBB dysfunction. The BBB-increased leakage in the hippocampi of LDLr-/-mice was related to high microvessel content and intense astrogliosis, which did not occur in the control mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。