Phosphorylated mTORC1 represses autophagic-related mRNA translation in neurons exposed to ischemia-reperfusion injury

磷酸化的 mTORC1 抑制缺血再灌注损伤神经元中的自噬相关 mRNA 翻译

阅读:5
作者:Rongrong Hua, Haiping Wei, Chunyan Liu, Zhe Shi, Yan Xing

Conclusions

The reactivated mTORC1 could suppress the transcription levels of related mRNA, such as LC3, Stx17, Vamp8, Snap29, Lamp2a, and Lamp2b. The research will expand the horizons that mTOR would negatively regulate autophagy at transcription and post-translation levels in neurons suffering ischemia-reperfusion injury.

Methods

The OGD/R or middle cerebral artery occlusion/reperfusion (MCAO/R)-treated neurons was used to simulate ischemia/reperfusion injury . Autophagy flux was monitored by means of microtubule-associated protein 1 light chain 3 (LC3) and p62. The reactivation of mTOR was determined by phosphorylation of ribosomal protein S6 kinase 1 (S6K1). Then the inhibitors of mTOR were used to confirm its existence form. Finally, the mRNA transcription levels were analyzed to observe the negative regulation of mTOR.

Results

The sequential phosphorylation of mTOR contributed to the neuronal autophagy flux blocking. mTOR was re-phosphorylated and existed as mTOR complex 1 (mTORC1), which was supported by phosphorylation of S6K1 at Thr 389 in neurons. In addition, the phosphorylation of S6K1 was decreased roughly by applying mTORC1 inhibitors, rapamycin and torin 1. However, the administration of mTORC1/2 inhibitor PP242 could recover the phosphorylation of S6K1, which suggested that mTORC2 was involved in the regulation of mTORC1 activity. In paralleling with reactivation of mTORC1, related mRNA transcription was repressed in neurons under ischemia-reperfusion exposure in vivo and in vitro. The mRNA expression levels of LC3, Stx17, Vamp8, Snap29, Lamp2a, and Lamp2b were decreased in neurons after reperfusion, comparing with ischemia-treated neurons. Conclusions: The reactivated mTORC1 could suppress the transcription levels of related mRNA, such as LC3, Stx17, Vamp8, Snap29, Lamp2a, and Lamp2b. The research will expand the horizons that mTOR would negatively regulate autophagy at transcription and post-translation levels in neurons suffering ischemia-reperfusion injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。