Cellular zinc status alters chromatin accessibility and binding of transcription factor p53 to genomic sites

细胞锌状态改变染色质的可及性和转录因子 p53 与基因组位点的结合

阅读:4
作者:Leah J Damon, Daniel Ocampo, Lynn Sanford, Taylor Jones, Mary A Allen, Robin D Dowell, Amy E Palmer

Abstract

Zinc (Zn2+) is an essential metal required by approximately 2500 proteins. Nearly half of these proteins act on DNA, including > 850 human transcription factors, polymerases, DNA damage response factors, and proteins involved in chromatin architecture. How these proteins acquire their essential Zn2+ cofactor and whether they are sensitive to changes in the labile Zn2+ pool in cells remain open questions. Here, we examine how changes in the labile Zn2+ pool affect chromatin accessibility and transcription factor binding to DNA. We observed both increases and decreases in accessibility in different chromatin regions via ATAC-seq upon treating MCF10A cells with elevated Zn2+ or the Zn2+-specific chelator tris(2-pyridylmethyl)amine (TPA). Transcription factor enrichment analysis was used to correlate changes in chromatin accessibility with transcription factor motifs, revealing 477 transcription factor motifs that were differentially enriched upon Zn2+ perturbation. 186 of these transcription factor motifs were enriched in Zn2+ and depleted in TPA, and the majority correspond to Zn2+ finger transcription factors. We selected TP53 as a candidate to examine how changes in motif enrichment correlate with changes in transcription factor occupancy by ChIP-qPCR. Using publicly available ChIP-seq and nascent transcription datasets, we narrowed the 50,000+ ATAC-seq peaks to 2164 TP53 targets and subsequently selected 6 high-probability TP53 binding sites for testing. ChIP-qPCR revealed that for 5 of the 6 targets, TP53 binding correlates with the local accessibility determined by ATAC-seq. These results demonstrate that changes in labile zinc directly alter chromatin accessibility and transcription factor binding to DNA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。