miR-125a-5p inhibits glycolysis by targeting hexokinase-II to improve pulmonary arterial hypertension

miR-125a-5p 通过靶向己糖激酶-II 抑制糖酵解以改善肺动脉高压

阅读:3
作者:Li Luo, Lusheng Xiao, Guili Lian, Huajun Wang, Liangdi Xie

Conclusion

In vitro and in vivo experiments both confirmed that miR-125a-5p could inhibit cell glycolysis and PASMC proliferation to improve PAH by targeting HK-II. Methods: HK-II overexpression was constructed, and differentially expressed microRNAs were screened for using microarrays. Serum metabolites were detected using Nuclear Magnetic Resonance (NMR). Through screening for characteristic metabolites in rat body fluids and by analyzing biological functions, disordered metabolic pathways were identified. Activity of the miR-125a-5p target HK-II was measured using a luciferase reporter assay. Expression of downstream molecules was measured by RT-qPCR and/or western blot. Glucose consumption and lactic acid production were analyzed and used as a reflection of glycolysis.

Methods

HK-II overexpression was constructed, and differentially expressed microRNAs were screened for using microarrays. Serum metabolites were detected using Nuclear Magnetic Resonance (NMR). Through screening for characteristic metabolites in rat body fluids and by analyzing biological functions, disordered metabolic pathways were identified. Activity of the miR-125a-5p target HK-II was measured using a luciferase reporter assay. Expression of downstream molecules was measured by RT-qPCR and/or western blot. Glucose consumption and lactic acid production were analyzed and used as a reflection of glycolysis.

Purpose

The aim of this study was to investigate the effect of microRNAs on the proliferation of pulmonary arterial smooth muscle cells (PASMCs) as a result of targeting hexokinase-II (HK-II) and its mechanism of action.

Results

Differences in metabolic patterns were found between the normal group and monocrotaline-induced pulmonary arterial hypertension (MCT-PH) group. miR-125a-5p decreased glycolysis levels of monocrotaline (MCT)-induced PASMCs by targeting HK-II and inhibiting its proliferation. In vivo experiments found that miR-125a-5p agomir upregulated HK-II expression in the MCT-PH. Right ventricular hypertrophy was reversed and cardiac function improved as a result of decreased mean pulmonary artery pressure (mPAP).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。