Identification of a new isoform of eEF2 whose phosphorylation is required for completion of cell division in sea urchin embryos

鉴定出一种新的 eEF2 亚型,其磷酸化是海胆胚胎细胞分裂完成所必需的

阅读:11
作者:Robert Bellé, Pierre-François Pluchon, Patrick Cormier, Odile Mulner-Lorillon

Abstract

Elongation factor 2 (eEF2) is the main regulator of peptide chain elongation in eukaryotic cells. Using sea urchin eggs and early embryos, two isoforms of eEF2 of respectively 80 and 83 kDa apparent molecular weight have been discovered. Both isoforms were identified by immunological analysis as well as mass spectrometry, and appeared to originate from a unique post-translationally modified protein. Accompanying the net increase in protein synthesis that occurs in early development, both eEF2 isoforms underwent dephosphorylation in the 15 min period following fertilization, in accordance with the active role of dephosphorylated eEF2 in regulation of protein synthesis. After initial dephosphorylation, the major 83 kDa isoform remained dephosphorylated while the 80 kDa isoform was progressively re-phosphorylated in a cell-cycle dependent fashion. In vivo inhibition of phosphorylation of the 80 kDa isoform impaired the completion of the first cell cycle of early development implicating the involvement of eEF2 phosphorylation in the exit from mitosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。