Retrofusion of intralumenal MVB membranes parallels viral infection and coexists with exosome release

腔内 MVB 膜的逆向融合与病毒感染同时发生,并与外泌体释放共存

阅读:4
作者:Priscillia Perrin, Lennert Janssen, Hans Janssen, Bram van den Broek, Lennard M Voortman, Daphne van Elsland, Ilana Berlin, Jacques Neefjes

Abstract

The endosomal system constitutes a highly dynamic vesicle network used to relay materials and signals between the cell and its environment.1 Once internalized, endosomes gradually mature into late acidic compartments and acquire a multivesicular body (MVB) organization through invagination of the limiting membrane (LM) to form intraluminal vesicles (ILVs).2 Cargoes sequestered into ILVs can either be delivered to lysosomes for degradation or secreted following fusion of the MVB with the plasma membrane.3 It has been speculated that commitment to ILVs is not a terminal event, and that a return pathway exists, allowing "back-fusion" or "retrofusion" of intraluminal membranes to the LM.4 The existence of retrofusion as a way to support membrane equilibrium within the MVB has been widely speculated in various cell biological contexts, including exosome uptake5 and major histocompatibility complex class II (MHC class II) antigen presentation.6-9 Given the small physical scale, retrofusion of ILVs cannot be measured with conventional techniques. To circumvent this, we designed a chemically tunable cell-based system to monitor retrofusion in real time. Using this system, we demonstrate that retrofusion occurs as part of the natural MVB lifestyle, with attributes parallel to those of viral infection. Furthermore, we find that retrofusion and exocytosis coexist in an equilibrium, implying that ILVs inert to retrofusion comprise a significant fraction of exosomes destined for secretion. MVBs thus contain three types of ILVs: those committed to lysosomal degradation, those retrofusing ILVs, and those subject to secretion in the form of exosomes. VIDEO ABSTRACT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。