Sequestration of a dual function DNA-binding protein by Vibrio cholerae CRP

霍乱弧菌 CRP 隔离双重功能 DNA 结合蛋白

阅读:5
作者:Jacob A Gibson, Michael J Gebhardt, Renato E R S Santos, Simon L Dove, Paula I Watnick

Abstract

Although the mechanism by which the cyclic AMP receptor protein (CRP) regulates global gene transcription has been intensively studied for decades, new discoveries remain to be made. Here, we report that, during rapid growth, CRP associates with both the well-conserved, dual-function DNA-binding protein peptidase A (PepA) and the cell membrane. These interactions are not present under nutrient-limited growth conditions, due to post-translational modification of three lysines on a single face of CRP. Although coincident DNA binding is rare, dissociation from CRP results in increased PepA occupancy at many chromosomal binding sites and differential regulation of hundreds of genes, including several encoding cyclic dinucleotide phosphodiesterases. We show that PepA represses biofilm formation and activates motility/chemotaxis. We propose a model in which membrane-bound CRP interferes with PepA DNA binding. Under nutrient limitation, PepA is released. Together, CRP and free PepA activate a transcriptional response that impels the bacterium to seek a more hospitable environment. This work uncovers a function for CRP in the sequestration of a regulatory protein. More broadly, it describes a paradigm of bacterial transcriptome modulation through metabolically regulated association of transcription factors with the cell membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。