Toward Omics-Scale Quantitative Mass Spectrometry Imaging of Lipids in Brain Tissue Using a Multiclass Internal Standard Mixture

使用多类内部标准混合物对脑组织中的脂质进行组学规模定量质谱成像

阅读:8
作者:Michiel Vandenbosch, Shadrack M Mutuku, Maria José Q Mantas, Nathan H Patterson, Tucker Hallmark, Marc Claesen, Ron M A Heeren, Nathan G Hatcher, Nico Verbeeck, Kim Ekroos, Shane R Ellis

Abstract

Mass spectrometry imaging (MSI) has accelerated our understanding of lipid metabolism and spatial distribution in tissues and cells. However, few MSI studies have approached lipid imaging quantitatively and those that have focused on a single lipid class. We overcome this limitation by using a multiclass internal standard (IS) mixture sprayed homogeneously over the tissue surface with concentrations that reflect those of endogenous lipids. This enabled quantitative MSI (Q-MSI) of 13 lipid classes and subclasses representing almost 200 sum-composition lipid species using both MALDI (negative ion mode) and MALDI-2 (positive ion mode) and pixel-wise normalization of each lipid species in a manner analogous to that widely used in shotgun lipidomics. The Q-MSI approach covered 3 orders of magnitude in dynamic range (lipid concentrations reported in pmol/mm2) and revealed subtle changes in distribution compared to data without normalization. The robustness of the method was evaluated by repeating experiments in two laboratories using both timsTOF and Orbitrap mass spectrometers with an ∼4-fold difference in mass resolution power. There was a strong overall correlation in the Q-MSI results obtained by using the two approaches. Outliers were mostly rationalized by isobaric interferences or the higher sensitivity of one instrument for a particular lipid species. These data provide insight into how the mass resolving power can affect Q-MSI data. This approach opens up the possibility of performing large-scale Q-MSI studies across numerous lipid classes and subclasses and revealing how absolute lipid concentrations vary throughout and between biological tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。