MicroRNA-210 regulates human trophoblast cell line HTR-8/SVneo function by attenuating Notch1 expression: Implications for the role of microRNA-210 in pre-eclampsia

MicroRNA-210 通过减弱 Notch1 表达来调节人类滋养层细胞系 HTR-8/SVneo 功能:microRNA-210 在先兆子痫中的作用

阅读:11
作者:Rongli Wang, Weifang Liu, Xiaoping Liu, Xiaoxia Liu, Hui Tao, Di Wu, Yin Zhao, Li Zou

Abstract

Successful pregnancy depends on the precise regulation of extravillous trophoblast cell invasion ability. MicroRNA-210-3p (miR-210), which is increased in the placenta of pre-eclampsia. Furthermore, miR-210 could inhibit trophoblasts invasion and might act as a serum biomarker for pre-eclampsia. Previous studies have demonstrated that miR-210 regulates HUVEC (human umbilical vein endothelial cell)-mediated angiogenesis by regulating the NOTCH1 signaling pathway. Studies by our group have previously identified that NOTCH1 plays a positive role in regulating trophoblast functions. However, the miR-210/NOTCH1 signaling pathway in the regulation of trophoblasts and pre-eclampsia has not been characterized. Therefore, this study was conducted to investigate the role of miR-210 and its relationship with NOTCH1 in trophoblasts. We first examined the expression levels of miR-210 and NOTCH1 in pre-eclamptic and normals placentas. Next, the expression and location of miR-210 and NOTCH1 in the first-trimester villi, maternal decidua, and placenta of late pregnancy were shown via in situ hybridization and immunohistochemistry. The trophoblast cell line HTR-8/SVneo was used to investigate the effects of miR-210 on the expression of NOTCH1 and cell bioactivity by upregulation and downregulation strategies. The results showed that miR-210 expression was increased, whereas NOTCH1 expression was decreased in pre-eclamptic placenta compared with controls. Upregulation of miR-210 decreased NOTCH1 expression, impaired HTR-8/SVneo proliferation, migration, invasion, and tube-like formation capabilities, and promoted apoptosis. In contrast, downregulation of miR-210 resulted in the opposite effects. These findings suggested that miR-210 might act as a contributor to trophoblast dysfunction by attenuating NOTCH1 expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。