MicroRNA‑320a inhibition decreases insulin‑induced KGN cell proliferation and apoptosis by targeting PCGF1

MicroRNA-320a 抑制通过靶向 PCGF1 减少胰岛素诱导的 KGN 细胞增殖和凋亡

阅读:4
作者:Lei Yang, Yan Li, Xiaojing Wang, Yuling Liu, Lingzhu Yang

Abstract

MicroRNAs (miRNAs) are widely involved in regulation of cellular processes of polycystic ovary syndrome (PCOS). However, the function of miR‑320a in PCOS remains unclear. The present study aimed to explore the effect of miR‑320a on PCOS cell proliferation and apoptosis following treatment with insulin, and to clarify the underlying mechanism. PCOS tissues and corresponding normal tissues were collected from 16 female patients with PCOS. KGN cells were pre‑treated with insulin, and KGN cells were transfected with ASO‑miR‑320a, miR‑320a mimics and polycomb group ring finger 1 (PCGF1) overexpression plasmids. Expressions of miR‑320a and PCGF1 were detected using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Dual‑Luciferase reporter assays were performed to investigate the target gene of miR‑320a. MTS, colony formation and flow cytometry assays were performed to determine cell viability, colony formation, and apoptosis, respectively. Furthermore, mRNA and protein expression levels of B‑cell lymphoma 2 apoptosis regulator (Bcl‑2) and Bcl‑2 associated protein X apoptosis regulator (Bax) were examined using RT‑qPCR and western blotting. The results demonstrated that miR‑320a expression was significantly increased in PCOS tissues compared with normal tissues. Moreover, miR‑320a was upregulated in insulin‑induced cells in a dose‑dependent manner. Inhibition of miR‑320a suppressed insulin‑induced cell viability and colony formation, and promoted apoptosis. Luciferase reporter assays demonstrated that PCGF1 was a target of miR‑320a. Additionally, PCGF1 overexpression inhibited cell viability and colony formation and promoted apoptosis. Additionally, the mRNA and protein levels of Bcl‑2 were inhibited by miR‑320a suppression and PCGF1 overexpression, while Bax expression was promoted by them in insulin‑induced cells. The results of the present study demonstrated that miR‑320a inhibition decreased insulin‑induced KGN cell proliferation and apoptosis by targeting PCGF1. These data indicated that miR‑320a may serve as a potential diagnostic biomarker for PCOS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。