Caveolin 1 and G-Protein-Coupled Receptor Kinase-2 Coregulate Endothelial Nitric Oxide Synthase Activity in Sinusoidal Endothelial Cells

Caveolin 1 和 G 蛋白偶联受体激酶 2 共同调节窦内皮细胞中的内皮型一氧化氮合酶活性

阅读:5
作者:Songling Liu, Richard T Premont, Shweta Singh, Don C Rockey

Abstract

Liver injury leads to a vasculopathy in which post-translational modifications of endothelial nitric oxide synthase (eNOS) lead to impaired nitric oxide synthesis. We hypothesized that caveolin 1 (CAV1), a well-known eNOS interactor, regulates eNOS activity in sinusoidal endothelial cells (SECs) via its interaction with G-protein-coupled receptor kinase-2 (GRK2) that also post-translationally modifies eNOS. Liver injury with portal hypertension was established using bile duct ligation in rats. CAV1 function was modified using a CAV1 scaffolding domain construct and cDNAs encoding wild-type CAV1, and CAV1 phosphorylation was increased in injured SECs, resulting in increased GRK2-CAV1 interaction and decreased eNOS activity. In injured SECs, endothelin-1 blocked CAV1 phosphorylation induced by CAV1 scaffolding domain, indicating that CAV1 interaction with GRK2 is inversely regulated by endothelin-1 and CAV1 scaffolding domain after liver injury. In addition, after transduction with DNA encoding wild-type CAV1 into SECs isolated from Cav1-deficient mice, GRK2 association with CAV1 was evident, whereas transduction with a dominant negative CAV1 mutated at tyrosine 14 reduced the interaction. Finally, isoproterenol-induced GRK2 phosphorylation enhanced CAV1-GRK2 interaction and reduced eNOS activity. Our data suggest a novel mechanism and model in which CAV1 phosphorylation facilitates CAV1 scaffolding and GRK2-CAV1 interaction, thus clustering eNOS within a complex that inhibits eNOS activity. This process takes place in injured, but not in normal, SECs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。