Sirt1 inhibits HG-induced endothelial injury: Role of Mff-based mitochondrial fission and F‑actin homeostasis-mediated cellular migration

Sirt1 抑制 HG 诱导的内皮损伤:基于 Mff 的线粒体裂变和 F 肌动蛋白稳态介导的细胞迁移的作用

阅读:5
作者:Ruijie Qin, Lina Zhang, Dong Lin, Fei Xiao, Lixin Guo

Abstract

Although sirtuin 1 (Sirt1) has been found to be involved in diabetic vasculopathy and high glucose (HG)‑mediated endothelial injury, the underlying mechanisms remain to be fully elucidated. The aim of the present study was to investigate the role of Sirt1 in HG‑induced endothelial injury and its potential mechanism. In the present study, it was demonstrated that HG triggers the downregulation of Sirt1 by activating microRNA‑195 in human umbilical vein endothelial cells (HUVECs), as determined by western blot analysis in vivo and in vitro. Furthermore, a lower expression of Sirt1 was correlated with glucose metabolic abnormalities, aortic endothelial dysfunction and endothelial apoptosis as evidenced by western blot analysis and ELISA in mice. By contrast, the loss of Sirt1 evoked mitochondrial fission factor (Mff)‑mediated mitochondrial fission through the c‑Jun N‑terminal kinase (JNK) pathway, which contributes to the apoptosis of HUVECs. In addition, Sirt1 deficiency downregulated the migration of HUVECs through F‑actin dyshomeostasis. Collectively, the results identify Sirt1 as a protective factor, which inhibits the JNK/Mff/mitochondrial fission pathway and sustains F‑actin homeostasis, and has potential implications for novel approaches to diabetic vasculopathy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。