Melatonin counteracts cobalt nanoparticle‑induced cytotoxicity and genotoxicity by deactivating reactive oxygen species‑dependent mechanisms in the NRK cell line

褪黑激素通过抑制 NRK 细胞系中的活性氧依赖机制来抵消钴纳米颗粒引起的细胞毒性和遗传毒性

阅读:6
作者:Yake Liu, Xiaoyou Yang, Wei Wang, Xuefei Wu, Hai Zhu, Fan Liu

Abstract

Cobalt nanoparticles (CoNPs) released from metal‑on‑metal implants have caused considerable concern. Oxidative stress is associated with the mechanism underlying cobalt‑induced cytotoxicity and genotoxicity. The indolamine melatonin exhibits protective effects against damage induced by metals. The present study investigated the in vitro effects of melatonin on the cytotoxicity and genotoxicity induced by CoNPs. CoNPs (20‑50 nm in diameter) were employed in the present study. NRK rat kidney cells were exposed to various concentrations of CoNPs for different durations. The results of the current study demonstrated that CoNPs significantly increased reactive oxygen species (ROS) production and reduced cell viability, as determined by dichlorofluorescein diacetate, and Cell Counting Kit‑8 and lactate dehydrogenase leakage assays, respectively. Furthermore, western blot analysis demonstrated that CoNPs led to an increase in the ratio of Bcl‑2‑associated X/Bcl‑2, and the expression of cleaved caspase‑3 was upregulated, which indicated increased apoptosis levels. Genotoxicity was detected by a comet assay, which revealed a significant induction in DNA damage, as determined by increases in the tail DNA % and olive tail moment. Phosphorylated‑histone H2AX foci analyses by immunofluorescence also demonstrated that CoNPs induced DNA‑double strand breaks. However, cellular treatment with melatonin reduced the effects of CoNPs on NRK cells by reducing the production of ROS. The results of the present study demonstrated that CoNPs induced cytotoxicity and genotoxicity by increasing oxidative stress, and melatonin may have pharmacological potential in protecting against the damaging effects of CoNPs following total hip arthroplasty.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。