Electroacupuncture serum inhibits TNF‑α‑mediated chondrocyte inflammation via the Ras‑Raf‑MEK1/2‑ERK1/2 signaling pathway

电针血清通过 Ras-Raf-MEK1/2-ERK1/2 信号通路抑制 TNF-α 介导的软骨细胞炎症

阅读:7
作者:Houhuang Chen, Xiang Shao, Li Li, Chunsong Zheng, Xin Xu, Xiue Hong, Xihai Li, Mingxia Wu

Abstract

The Ras‑Raf‑mitogen‑activated protein kinase kinase (MEK)1/2‑extracellular signal‑regulated kinase (ERK)1/2 signaling pathway contributes to the release of chondral matrix‑degrading enzymes and accelerates the degradation of articular cartilage. Electroacupuncture (EA) treatment has been widely used for the treatment of osteoarthritis (OA); however, the mechanism underlying the effects of EA on OA remains unclear. Therefore, the present study evaluated the anti‑inflammatory effects and potential underlying mechanisms of EA serum (EAS) on tumor necrosis factor (TNF)‑α‑mediated chondrocyte inflammation. A total of 30 Sprague Dawley rats were randomly divided into three groups: The blank group; experimental group I, which received 15 min of EA treatment; and experimental group II, which received 30 min of EA treatment. Subsequently, serum samples were obtained. Chondrocytes were isolated from the knee cartilage of Sprague Dawley rats, and were identified using collagen type II immunohistochemistry. TNF‑α‑treated chondrocytes were used as a cell model, and subsequently the cells were treated with EAS from each group for various durations. The results demonstrated that EAS treatment significantly promoted the viability and inhibited the apoptosis of TNF‑α‑treated chondrocytes. In addition, interleukin (IL)‑1β concentration was significantly increased in the model group compared with in the control group, whereas EAS significantly reduced IL‑1β concentration in TNF‑α‑treated chondrocytes. Furthermore, the protein expression levels of Ras, Raf and MEK1/2 were reduced in the EAS groups compared with in the model group. EAS also significantly inhibited the phosphorylation of ERK1/2, and the expression of downstream regulators matrix metalloproteinase (MMP)‑3 and MMP‑13. In conclusion, these results indicated that EAS may inhibit TNF‑α‑mediated chondrocyte inflammation via the Ras‑Raf‑MEK1/2‑ERK1/2 signaling pathway in vitro, thus suggesting that EAS may be considered a potential therapeutic strategy for the treatment of OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。